Theory of Equations 1 Question 44

45. If x210ax11b=0 have roots c and d. x210cx11d=0 have roots a and b, then find a+b+c+d.

(2006,6M)

Show Answer

Solution:

  1. Here,

a+b=10c and c+d=10a

(ac)+(bd)=10(ca) (bd)=11(ca)

Since, ’ c ’ is the root of x210ax11b=0

c210ac11b=0

Similarly, ’ a ’ is the root of

x210cx11d=0a210ca11d=0

On subtracting Eq. (iv) from Eq. (ii), we get

(c2a2)=11(bd)(c+a)(ca)=11×11(ca)c+a=121a+b+c+d=10c+10a=10(c+a)=1210



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक