Theory of Equations 1 Question 35

36. Both the roots of the equation

$(x-b)(x-c)+(x-a)(x-c)+(x-a)(x-b)=0$

are always

(1980, 1M)

(a) positive

(b) negative

(c) real

(d) None of the above

Show Answer

Solution:

  1. $(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$

$\Rightarrow \quad 3 x^{2}-2(a+b+c) x+(a b+b c+c a)=0$

Now, discriminant $=4(a+b+c)^{2}-12(a b+b c+c a)$

$$ \begin{aligned} & =4{a^{2}+b^{2}+c^{2}-a b-b c-c a } \\ & =2{(a-b)^{2}+(b-c)^{2}+(c-a)^{2} } \end{aligned} $$

which is always positive.

Hence, both roots are real.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक