Theory of Equations 1 Question 31

32. If α and β are the roots of x2+px+q=0 and α4,β4 are the roots of x2rx+s=0, then the equation x24qx+2q2r=0 has always

(1989, 2M)

(a) two real roots

(b) two positive roots

(c) two negative roots

(d) one positive and one negative root

Show Answer

Solution:

  1. Since, α,β are the roots of x2+px+q=0 and α4,β4 are the roots of x2rx+s=0.

α+β=p;αβ=q;α4+β4=r and α4β4=s

Let roots of x24qx+(2q2r)=0 be α and β

Now, αβ=(2q2r)=2(αβ)2(α4+β4)

=(α4+β42α2β2)=(α2β2)2<0

Roots are real and of opposite sign.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक