Theory of Equations 1 Question 29

30. The equation $\sqrt{x+1}-\sqrt{x-1}=\sqrt{4 x-1}$ has

(1997C, 2M)

(a) no solution

(b) one solution

(c) two solutions

(d) more than two solutions

Show Answer

Solution:

  1. Since,

$$ \sqrt{x+1}-\sqrt{x-1}=\sqrt{4 x-1} $$

$\Rightarrow \quad(x+1)+(x-1)-2 \sqrt{x^{2}-1}=4 x-1$

$\Rightarrow \quad 1-2 x=2 \sqrt{x^{2}-1} \Rightarrow 1+4 x^{2}-4 x=4 x^{2}-4$

$\Rightarrow \quad 4 x=5 \quad \Rightarrow \quad x=\frac{5}{4}$

But it does not satisfy the given equation.

Hence, no solution exists.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक