Theory of Equations 1 Question 25

26. The set of all real numbers $x$ for which $x^{2}-|x+2|+x>0$ is

(2002, 1M)

(a) $(-\infty,-2) \cup(2, \infty)$

(b) $(-\infty,-\sqrt{2}) \cup(\sqrt{2}, \infty)$

(c) $(-\infty,-1) \cup(1, \infty)$

(d) $(\sqrt{2}, \infty)$

Show Answer

Solution:

  1. Given, $x^{2}-|x+2|+x>0$

Case I When $\quad x+2 \geq 0$

$$ \begin{array}{lc} \therefore & x^{2}-x-2+x>0 \Rightarrow x^{2}-2>0 \\ \Rightarrow & x<-\sqrt{2} \text { or } x>\sqrt{2} \\ \Rightarrow & x \in[-2,-\sqrt{2}) \cup(\sqrt{2}, \infty) \end{array} $$

Case II When $x+2<0$

$$ \begin{array}{ll} \therefore & x^{2}+x+2+x>0 \\ \Rightarrow & x^{2}+2 x+2>0 \\ \Rightarrow & (x+1)^{2}+1>0 \end{array} $$

which is true for all $x$.

$$ \therefore \quad x \leq-2 \text { or } x \in(-\infty,-2) $$

From Eqs. (ii) and (iii), we get

$$ x \in(-\infty,-\sqrt{2}) \cup(\sqrt{2}, \infty) $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक