Straight Line and Pair of Straight Lines 3 Question 8

9. Consider the lines given by

$L _1: x+3 y-5=0, \quad L _2: 3 x-k y-1=0$, $L _3: 5 x+2 y-12=0$

Column I Column II
(A) $L _1, L _2, L _3$ are concurrent, if (p) $k=-9$
(B) One of $L _1, L _2, L _3$ is parallel to
at least one of the other two, if
(q) $k=-\frac{6}{5}$
(C) $L _1, L _2, L _3$ form a triangle, if (r) $k=\frac{5}{6}$
(D)$L _1, L _2, L _3$ do not form a
triangle, if
(s) $k=5$

Fill in the Blank

Show Answer

Answer:

Correct Answer: 9. $A \rightarrow s ; B \rightarrow p, q ; C \rightarrow r ; D \rightarrow p, q, s$

Solution:

  1. (A) Solving equations $L _1$ and $L _3$,

$$ \begin{aligned} \frac{x}{-36+10}=\frac{y}{-25+12} & =\frac{1}{2-15} \\ \therefore \quad x & =2, y=1 \end{aligned} $$

$$ L _1, L _2, L _3 \text { are concurrent, if point }(2,1) \text { lies on } L _2 $$

$$ \therefore \quad 6-k-1=0 \quad \Rightarrow \quad k=5 $$

(B) Either $L _1$ is parallel to $L _2$, or $L _3$ is parallel to $L _2$, then

$$ \begin{aligned} \frac{1}{3} & =\frac{3}{-k} \text { or } \quad \frac{3}{5}=\frac{-k}{2} \quad \Rightarrow \quad k=-9 \\ \text { or } \quad k & =\frac{-6}{5} \end{aligned} $$

(C) $L _1, L _2, L _3$ form a triangle, if they are not concurrent, or not parallel.

$$ \therefore \quad k \neq 5,-9,-\frac{6}{5} \Rightarrow k=\frac{5}{6} $$

(D) $L _1, L _2, L _3$ do not form a triangle, if

$$ k=5,-9,-\frac{6}{5} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक