Straight Line and Pair of Straight Lines 1 Question 67

67. The points $(1,3)$ and $(5,1)$ are two opposite vertices of a rectangle. The other two vertices lie on the line $y=2 x+c$. Find $c$ and the remaining vertices. (1981,4M)

Show Answer

Answer:

Correct Answer: 67. $(-4,-7)$

Solution:

  1. Since, diagonals of rectangle bisect each other, so mid point of $(1,3)$ and $(5,1)$ must satisfy $y=2 x+c$, i.e. $(3,2)$ lies on it.

$\Rightarrow \quad c=-4$

$\therefore$ Other two vertices lies on $y=2 x-4$

Let the coordinate of $B$ be $(x, 2 x-4)$.

$\therefore$ Slope of $A B \cdot$ Slope of $B C=-1$

$$ \begin{aligned} & \Rightarrow \quad \frac{2 x-4-3}{x-1} \cdot \frac{2 x-4-1}{x-5}=-1 \\ & \Rightarrow \quad\left(x^{2}-6 x+8\right)=0 \\ & \Rightarrow \quad x=4,2 \\ & \Rightarrow \quad y=4,0 \end{aligned} $$

Hence, required points are $(4,4),(2,0)$.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक