Straight Line and Pair of Straight Lines 1 Question 49

49. No tangent can be drawn from the point $(5 / 2,1)$ to the circumcircle of the triangle with vertices $(1, \sqrt{3})$, $(1,-\sqrt{3})$ and $(3, \sqrt{3})$.

(1985, 1M)

Show Answer

Solution:

  1. Since, $(1, \sqrt{3}),(1,-\sqrt{3})$ and $(3, \sqrt{3})$ form a right angled triangle at $(1, \sqrt{3})$

$\therefore$ Equation of circumcircle taking $(3, \sqrt{3})$ and $(1,-\sqrt{3})$ as end points of diameter.

$$ \begin{aligned} & \therefore & (x-3)(x-1)+(y-\sqrt{3})(y+\sqrt{3}) & =0 \\ & \Rightarrow & x^{2}-4 x+3+y^{2}-3 & =0 \\ & \Rightarrow & x^{2}+y^{2}-4 x & =0 \end{aligned} $$

At point

$$ \frac{5}{2}, 1, S _1=\frac{25}{4}+1-10<0 $$

$\therefore$ Point $(5 / 2,1)$ lies inside the circle.

Hence, no tangent can be drawn.

Hence, given statement is true.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक