Straight Line and Pair of Straight Lines 1 Question 2

2. The equation $y=\sin x \sin (x+2)-\sin ^{2}(x+1)$ represents a straight line lying in

(a) second and third quadrants only

(b) first, second and fourth quadrants

(c) first, third and fourth quadrants

(d) third and fourth quadrants only

Show Answer

Solution:

Key Idea Use formulae :

$2 \sin A \sin B=\cos (A-B)-\cos (A+B)$ and $\cos 2 \theta=1-2 \sin ^{2} \theta$

Given equation is $y=\sin x \sin (x+2)-\sin ^{2}(x+1)$

$$ =\frac{1}{2}[\cos 2-\cos (2 x+2)]-\frac{1}{2}[1-\cos (2 x+2)] $$

$[\because 2 \sin A \sin B=\cos (A-B)-\cos (A+B)$ and $\left.\cos 2 \theta=1-2 \sin ^{2} \theta \Rightarrow 2 \sin ^{2} \theta=1-\cos 2 \theta\right]$

$=\frac{1}{2} \cos 2-\frac{1}{2} \cos (2 x+2)-\frac{1}{2}+\frac{1}{2} \cos (2 x+2)$

$=\frac{1}{2}(\cos (2)-1)=-\frac{1}{2}\left(2 \sin ^{2}(1)\right)$

$=-\sin ^{2}(1)<0 \Rightarrow y<0$

and as we know that $y<0$, is in third and fourth quadrants only.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक