Sequences and Series 4 Question 2

2. Let Sn=1+q+q2++qn and Tn=1+q+12+q+122++q+12n, where q is a real number and q1. If

101C1+101C2S1++101C101S100=αT100, then α is equal to

(a) 2100

(b) 202

(c) 200

(d) 299

(2019 Main, 11 Jan II)

Show Answer

Solution:

  1. (a) We have, Sn=1+q+q2++qn and

Tn=1+q+12+q+122++q+12n

Also, we have

101C1+101C2S1+101C3S2++101C101S100=αT100101C1+101C2(1+q)+101C3(1+q+q2)++101C101(1+q+q2++q100)=αT100101C1+101C2(1q2)1q+101C31q31q+101C41q41q++101C1011q1011q=αT100[ for a GP ,Sn=a1rn1r,r1]11q[101C1+101C2++101C101101C1q+101C2q2++101C101q101=αT1001(1q)[(21011)((1+q)1011)]=αT100

[q1q+12q+121]=α[2101(q+1)101](1q)2100α=2100



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक