Sequences and Series 3 Question 4

4. Let $a _1, a _2, \ldots, a _{10}$ be a GP. If $\frac{a _3}{a _1}=25$, then $\frac{a _9}{a _5}$ equals

(2019 Main, 11 Jan I)

(a) $5^{3}$

(b) $2\left(5^{2}\right)$

(c) $4\left(5^{2}\right)$

(d) $5^{4}$

Show Answer

Answer:

Correct Answer: 4. (b)

Solution:

  1. Let $r$ be the common ratio of given GP, then we have the following sequence $a _1, a _2=a _1 r, a _3=a _1 r^{2}, \ldots, a _{10}=a _1 r^{9}$ Now,

$$ a _3=25 a _1 $$

$$ \begin{aligned} \Rightarrow & & a _1 r^{2} & =25 a _1 \\ \Rightarrow & & r^{2} & =25 \end{aligned} $$

Consider, $\frac{a _9}{a _5}=\frac{a _1 r^{8}}{a _1 r^{4}}=r^{4}=(25)^{2}=5^{4}$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक