Sequences and Series 2 Question 10

11. If Sn=24n(1)k(k+1)2k2. Then, Sn can take value(s)

(a) 1056

(b) 1088

(c) 1120

(d) 1332

(2013 Adv.)

Passage Based Problems

Read the following passage and answer the questions.

Passage

Let Vr denotes the sum of the first r terms of an arithmetic progression (AP) whose first term is r and the common difference is (2r1). Let Tr=Vr+1Vr and Qr=Tr+1Tr for r=1,2,

(2007, 8M)

Show Answer

Answer:

Correct Answer: 11. (b)

Solution:

  1. PLAN Convert it into differences and use sum of nterms of an AP,

 i.e. Sn=n2[2a+(n1)d]

Now, Sn=k=14n(1)k(k+1)2k2

=(1)222+32+425262+72+82+=(3212)+(4222)+(7252)+(8262)+=2(4+6+12+)n terms +(6+14+22+)n terms =2n22×4+(n1)8+n22×6+(n1)8=2[n(4+4n4)+n(6+4n4)]=2[4n2+4n2+2n]=4n(4n+1)

Here, 1056=32×33,1088=32×34,

1120=32×35,1332=36×37

1056 and 1332 are possible answers.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक