Sequences and Series 1 Question 1

1. If $a _1, a _2, a _3, \ldots, a _n$ are in $AP$ and $a _1+a _4+a _7+\ldots+a _{16}$ $=114$, then $a _1+a _6+a _{11}+a _{16}$ is equal to

(a) 64

(b) 76

(c) 98

(d) 38

(2019 Main, 10 April I)

Show Answer

Answer:

Correct Answer: 1. (b)

Solution:

  1. Key Idea Use $n$th term of an AP i.e. $a _n=a+(n-1) d$, simplify the given equation and use result.

Given $AP$ is $a _1, a _2, a _3, \ldots, a _n$

Let the above AP has common difference ’ $d$ ‘, then $a _1+a _4+a _7+\ldots+a _{16}$

$=a _1+\left(a _1+3 d\right)+\left(a _1+6 d\right)+\ldots+\left(a _1+15 d\right)$

$=6 a _1+(3+6+9+12+15) d$

$$ \begin{aligned} & \therefore 6 a _1+45 d=114 \\ & \Rightarrow \quad 2 a _1+15 d=38 \end{aligned} $$

(given)

Now, $a _1+a _6+a _{11}+a _{16}$

$=a _1+\left(a _1+5 d\right)+\left(a _1+10 d\right)+\left(a _1+15 d\right)$

$=4 a _1+30 d=2\left(2 a _1+15 d\right)$

$=2 \times 38=76$

[from Eq. (i)]



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक