Properties of Triangles 2 Question 7

7. If $\Delta$ is the area of a triangle with side lengths $a, b, c$, then show that

$$ \Delta \leq \frac{1}{4} \sqrt{(a+b+c) a b c} $$

Also, show that the equality occurs in the above inequality if and only if $a=b=c$.

$(2001,6 M)$

Show Answer

Answer:

Correct Answer: 7. 4 sq units

Solution:

  1. Given,

$$ \Delta \leq \frac{1}{4} \sqrt{(a+b+c) a b c} $$

$$ \begin{aligned} & \Rightarrow \quad \frac{1}{4 \Delta} \sqrt{(a+b+c) a b c} \geq 1 \\ & \Rightarrow \quad \frac{(a+b+c) a b c}{16 \Delta^{2}} \geq 1 \\ & \Rightarrow \quad \frac{2 s a b c}{16 \Delta^{2}} \geq 1 \\ & \Rightarrow \quad \frac{s a b c}{8 \cdot s(s-a)(s-b)(s-c)} \geq 1 \\ & \Rightarrow \quad \frac{a b c}{8(s-a)(s-b)(s-c)} \geq 1 \\ & \Rightarrow \quad \frac{a b c}{8} \geq(s-a)(s-b)(s-c) \end{aligned} $$

Now, put $s-a=x \geq 0, s-b=y \geq 0, s-c=z \geq 0$

$$ \begin{aligned} s-a+s-b & =x+y \\ 2 s-a-b & =x+y \\ c & =x+y \end{aligned} $$

Similarly, $a=y+z, b=x+z$

$\Rightarrow \quad \frac{(x+y)}{2} \cdot \frac{(y+z)}{2} \cdot \frac{(x+z)}{2} \geq x y z$

which it true.

Now, equality will hold, if $x=y=z$

$\Rightarrow a=b=c$

$\Rightarrow$ Triangle is equilateral.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक