Properties of Triangles 2 Question 6

6. The set of all real numbers a such that $a^{2}+2 a, 2 a+3$ and $a^{2}+3 a+8$ are the sides of a triangle is ……

$(1985,2 M)$

Analytical & Descriptive Questions

Show Answer

Answer:

Correct Answer: 6. $p \in(-\infty, 0) \cup[3+2 \sqrt{2}, \infty)$

Solution:

  1. Since, $a^{2}+2 a, 2 a+3$ and $a^{2}+3 a+8$ form sides of a triangle.

Now, $a^{2}+3 a+8<\left(a^{2}+2 a\right)+(2 a+3)$

$\Rightarrow \quad a^{2}+3 a+8<a^{2}+4 a+3$

$\Rightarrow \quad a>5$

Also, $\left(a^{2}+3 a+8\right)+(2 a+3)>a^{2}+2 a$

$$ \begin{aligned} \Rightarrow & 3 a & >-11 \\ \Rightarrow & a & >-\frac{11}{3} \end{aligned} $$

Again, $\left(a^{2}+3 a+8\right)+\left(a^{2}+2 a\right)>2 a+3$

$$ \Rightarrow \quad 2 a^{2}+3 a+5>0 $$

which is always true.

$\therefore$ Triangle is formed, if $a>5$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक