Properties of Triangles 2 Question 16

16. If $p _1, p _2, p _3$ are the perpendiculars from the vertices of a triangle to the opposite sides, then prove that

$$ p _1 p _2 p _3=\frac{a^{2} b^{2} c^{2}}{8 R^{3}} $$

(1978, 3M)

Integer Answer Type Question

Show Answer

Solution:

  1. We know that, $\Delta=\frac{1}{2} a p _1$

$\Rightarrow \quad p _1=\frac{2 \Delta}{a}$

Similarly, $\quad p _2=\frac{2 \Delta}{b}$ and $p _3=\frac{2 \Delta}{c}$

Now,

$$ p _1 p _2 p _3=\frac{8 \Delta^{3}}{a b c} $$

Since, $\Delta=\frac{a b c}{4 R}$

$$ \therefore \quad p _1 p _2 p _3=\frac{8}{a b c} \cdot \frac{(a b c)^{3}}{64 R^{3}}=\frac{(a b c)^{2}}{8 R^{3}} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक