Properties of Triangles 2 Question 10

10. Let A,B,C be three angles such that A=π4 and tanB,tanC=p. Find all positive values of p such that A,B,C are the angles of triangle.

(1997C, 5M)

Show Answer

Solution:

  1. Since, A+B+C=π

B+C=ππ/4=3π/4

0<B,C<3π/4

[A=π/4, given ]

Also, given tanBtanC=p

sinBsinCcosBcosC=p1

sinBsinC+cosBcosCsinBsinCcosBcosC=p+1p1

cos(BC)cos(B+C)=1+p1p

cos(BC)=(1+p)2(1p)

[B+C=3π/4]

Since, B or C can vary from 0 to 3π/4

0BC<3π/412<cos(BC)1

From Eqs. (ii) and (iii), 12<1+p2(p1)1

12<1+p2(p1) and 1+p2(p1)11+pp1+10 and 1+p2p+22(p1)02pp10 and (12)p1+2122(p1)02pp1>0 and (p(2+1)2)(p1)0

(p<0 or p>1) and (p<1 or p>(2+1)2)

On combining above expressions, we get

p<0 or p(2+1)2 i.e. p(,0)[(2+1)2,) or p(,0)[3+22,)



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक