Properties of Triangles 1 Question 6

6. In a $\triangle A B C$, among the following which one is true?

(a) $(b+c) \cos \frac{A}{2}=a \sin \frac{B+C}{2}$

(2005, 1M)

(b) $(b+c) \cos \frac{B+C}{2}=a \sin \frac{A}{2}$

(c) $(b-c) \cos \frac{B-C}{2}=a \cos \frac{A}{2}$

(d) $(b-c) \cos \frac{A}{2}=a \sin \frac{B-C}{2}$

Show Answer

Answer:

Correct Answer: 6. (d)

Solution:

  1. Let $a, b, c$ are the sides of $\triangle A B C$.

Now, $\quad \frac{b+c}{a}=\frac{k(\sin B+\sin C)}{k \sin A} \quad$ [by sine rule]

$$ =\frac{2 \sin \frac{B+C}{2} \cos \frac{B-C}{2}}{2 \sin \frac{A}{2} \cos \frac{A}{2}} \Rightarrow \frac{b+c}{a}=\frac{\cos \frac{B-C}{2}}{\sin \frac{A}{2}} $$

Also,

$$ \frac{b-c}{a}=\frac{\sin \frac{B-C}{2}}{\cos \frac{A}{2}} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक