Properties of Triangles 1 Question 23

23. ABC is a triangle. D is the middle point of BC. If AD is perpendicular to AC, then prove that

cosAcosC=2(c2a2)3ac

(1980,3M)

Show Answer

Solution:

  1. In ADC, we have

Applying cosine formula in ABC, we have

cosA=b2+c2a22bccosC=a2+b2c22ab

From Eqs. (i) and (ii),

a2+b2c22ab=2baa2+b2c2=4b2a2c2=3b2

Now, cosAcosC=b2+c2a22bc2ba

=b2+c2a2ac=3b2+3(c2a2)3ac=(a2c2)+3(c2a2)3ac=2(c2a2)3ac



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक