Properties of Triangles 1 Question 16

16. There exists a $\triangle A B C$ satisfying the conditions

(a) $b \sin A=a, A<\frac{\pi}{2}$

(b) $b \sin A>a, A>\frac{\pi}{2}$

(c) $b \sin A>a, A<\frac{\pi}{2}$

(d) $b \sin A<a, A<\frac{\pi}{2}, b>a$

Fill in the Blanks

Show Answer

Answer:

Correct Answer: 16. (a, d)

Solution:

  1. The sine formula is

$$ \frac{a}{\sin A}=\frac{b}{\sin B} \Rightarrow a \sin B=b \sin A $$

(a) $b \sin A=a \Rightarrow a \sin B=a$

$\Rightarrow B=\frac{\pi}{2}$

Since, $\angle A<\frac{\pi}{2}$, therefore the triangle is possible.

(b) and (c) $b \sin A>a$

$\Rightarrow a \sin B>a \Rightarrow \sin B>1$

$\therefore \triangle A B C$ is not possible.

(d) $b \sin A<a$

$\Rightarrow a \sin B<a \Rightarrow \sin B<1 \quad \Rightarrow \quad \angle B$ exists.

Now, $b>a \quad \Rightarrow \quad B>A$

Since, $A<\frac{\pi}{2}$

$\therefore$ The triangle is possible.

Hence, (a) and (d) are the correct answers.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक