Probability 5 Question 7

7. Two cards are drawn successively with replacement from a well shuffled deck of 52 cards. Let $X$ denote the random variable of number of aces obtained in the two drawn cards. Then, $P(X=1)+P(X=2)$ equals

(a) $\frac{25}{169}$

(b) $\frac{52}{169}$

(c) $\frac{49}{169}$

(d) $\frac{24}{169}$

Show Answer

Answer:

Correct Answer: 7. (a)

Solution:

  1. Let $p=$ probability of getting an ace in a draw $=$ probability of success

and $q=$ probability of not getting an ace in a draw $=$ probability of failure

Then, $\quad p=\frac{4}{52}=\frac{1}{13}$

and $\quad q=1-p=1-\frac{1}{13}=\frac{12}{13}$

Here, number of trials, $n=2$

Clearly, $X$ follows binomial distribution with parameter $n=2$ and $p=\frac{1}{13}$.

Now, $\quad P(X=x)={ }^{2} C _x \frac{1}{13}^{x} \quad \frac{12}{13}{ }^{2-x}, x=0,1,2$

$\therefore \quad P(X=1)+P(X=2)$

$={ }^{2} C _1 \frac{1}{13}^{1} \frac{12}{13}+{ }^{2} C _2 \frac{1}{13}^{2} \frac{12}{13}^{0}$

$=2 \frac{12}{169}+\frac{1}{169}$

$=\frac{24}{169}+\frac{1}{169}=\frac{25}{169}$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक