Probability 5 Question 4

4. The minimum number of times one has to toss a fair coin so that the probability of observing atleast one head is atleast $90 %$ is

(2019 Main, 8 April II)

(a) 2

(b) 3

(c) 5

(d) 4

Show Answer

Answer:

Correct Answer: 4. (d)

Solution:

  1. The required probability of observing atleast one head

$$ \begin{array}{ll} =1-P(\text { no head }) & \\ =1-\frac{1}{2^{n}} \quad[\text { let number of toss are } n] \\ & \because P(\text { Head })=P(\text { Tail })=\frac{1}{2} \end{array} $$

According to the question, $1-\frac{1}{2^{n}} \geq \frac{90}{100}$

$\Rightarrow \frac{1}{2^{n}} \leq \frac{1}{10} \Rightarrow 2^{n} \geq 10 \Rightarrow n \geq 4$

So, minimum number of times one has to toss a fair coin so that the probability of observing atleast one head is atleast $90 %$ is 4 .



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक