Probability 5 Question 3

3. Minimum number of times a fair coin must be tossed so that the probability of getting atleast one head is more than $99 %$ is

(2019 Main 10 April II)

(a) 8

(b) 6

(c) 7

(d) 5

Show Answer

Answer:

Correct Answer: 3. (c)

Solution:

  1. As we know probability of getting a head on a toss of a fair coin is $P(H)=\frac{1}{2}=p$ (let)

Now, let $n$ be the minimum numbers of toss required to get at least one head, then required probability $=1-$ (probability that on all ’ $n$ ’ toss we are getting tail)

$$ =1-\frac{1}{2}^{n} \quad \because P(\text { tail })=P(\text { Head })=\frac{1}{2} $$

According to the question,

$$ \begin{array}{rlrl} & 1-\frac{1}{2}^{n} & >\frac{99}{100} \Rightarrow \frac{1}{2}^{n}<1-\frac{99}{100} \\ \Rightarrow \quad \frac{1}{2}^{n} & <\frac{1}{100} \Rightarrow 2^{n}>100 \\ \Rightarrow \quad n & =7 \quad \text { [for minimum] } \end{array} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक