Probability 3 Question 9

9. An experiment has 10 equally likely outcomes. Let $A$ and $B$ be two non-empty events of the experiment. If $A$ consists of 4 outcomes, then the number of outcomes that $B$ must have, so that $A$ and $B$ are independent, is

(a) 2,4 or 8

(b) 3,6 or 9

(c) 4 or 8

(d) 5 or 10

$(2008,3$ M)

Show Answer

Solution:

  1. Since, $P(A)=\frac{2}{5}$

For independent events,

$$ \begin{aligned} & P(A \cap B)=P(A) P(B) \\ \Rightarrow & P(A \cap B) \leq \frac{2}{5} \\ \Rightarrow \quad & P(A \cap B)=\frac{1}{10}, \frac{2}{10}, \frac{3}{10}, \frac{4}{10} \end{aligned} $$

[maximum 4 outcomes may be in $A \cap B$ ]

(i) Now, $\quad P(A \cap B)=\frac{1}{10}$

$$ \begin{array}{ll} \Rightarrow & P(A) \cdot P(B)=\frac{1}{10} \\ \Rightarrow & P(B)=\frac{1}{10} \times \frac{5}{2}=\frac{1}{4}, \text { not possible } \end{array} $$

(ii) Now, $\quad P(A \cap B)=\frac{2}{10} \Rightarrow \frac{2}{5} \times P(B)=\frac{2}{10}$

$\Rightarrow \quad P(B)=\frac{5}{10}$, outcomes of $B=5$

(iii) Now, $\quad P(A \cap B)=\frac{3}{10}$

$$ \begin{gathered} \Rightarrow \quad P(A) P(B)=\frac{3}{10} \Rightarrow \frac{2}{5} \times P(B)=\frac{3}{10} \\ P(B)=\frac{3}{4}, \text { not possible } \end{gathered} $$

(iv) Now,

$$ P(A \cap B)=\frac{4}{10} \Rightarrow P(A) \cdot p(B)=\frac{4}{10} $$

$$ \Rightarrow \quad P(B)=1 \text {, outcomes of } B=10 \text {. } $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक