Probability 3 Question 25

25. If $\bar{E}$ and $\bar{F}$ are the complementary events of $E$ and $F$ respectively and if $0<P(F)<1$, then

$(1998,2 M)$

(a) $P(E / F)+P(\bar{E} / F)=1$

(c) $P(\bar{E} / F)+P(E / \bar{F})=1$

(b) $P(E / F)+P(E / \bar{F})=1$

(d) $P(E / \bar{F})+P(\bar{E} / \bar{F})=1$

Show Answer

Solution:

  1. (a) $P(E / F)+P(\bar{E} / F)=\frac{P(E \cap F)}{P(F)}+\frac{P(\bar{E} \cap F)}{P(F)}$

$$ \begin{aligned} & =\frac{P(E \cap F)+P(\bar{E} \cap F)}{P(F)} \\ & =\frac{P(F)}{P(F)}=1 \end{aligned} $$

Therefore, option (a) is correct.

(b) $P(E / F)+P(E / \bar{F})=\frac{P(E \cap F)}{P(F)}+\frac{P(E \cap \bar{F})}{P(\bar{F})}$

$$ =\frac{P(E \cap F)}{P(F)}+\frac{P(E \cap \bar{F})}{1-P(F)} \neq 1 $$

Therefore, option (b) is not correct.

(c) $P(\bar{E} / F)+P(E / \bar{F})=\frac{P(\bar{E} \cap F)}{P(F)}+\frac{P(E \cap \bar{F})}{P(\bar{F})}$

$$ =\frac{P(\bar{E} \cap F)}{P(F)}+\frac{P(E \cap \bar{F})}{1-P(F)} \neq 1 $$

Therefore, option (c) is not correct.

(d) $P(E / \bar{F})+P(\bar{E} / \bar{F})=\frac{P(E \cap \bar{F})}{P(\bar{F})}+\frac{P(\bar{E} \cap \bar{F})}{P(\bar{F})}$

$$ \begin{aligned} & =\frac{P(E \cap \bar{F})+P(\bar{E} \cap \bar{F})}{P(\bar{F})} \\ & =\frac{P(\bar{F})}{P(\bar{F})}=1 \end{aligned} $$

Therefore, option (d) is correct.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक