Probability 3 Question 19
19. If $A$ and $B$ are two independent events such that $P(A)>0$, and $P(B) \neq 1$, then $P(\bar{A} / \bar{B})$ is equal to
(a) $1-P(A / B)$
(b) $1-P(A / \bar{B})$
(c) $\frac{1-P(A \cup B)}{P(B)}$
(d) $\frac{P(\bar{A})}{P(\bar{B})}$
$(1982,2 M)$
Show Answer
Solution:
- Since, $P(A / \bar{B})+P(\bar{A} / \bar{B})=1$
$$ \therefore \quad P(\bar{A} / \bar{B})=1-P(A / \bar{B}) $$