Probability 3 Question 10

10. Let $E^{c}$ denotes the complement of an event $E$. If $E, F, G$ are pairwise independent events with $P(G)>0$ and $P(E \cap F \cap G)=0$. Then, $P\left(E^{c} \cap F^{c} \mid G\right)$ equals(2007, 3M)

(a) $P\left(E^{c}\right)+P\left(F^{c}\right)$

(b) $P\left(E^{c}\right)-P\left(F^{c}\right)$

(c) $P\left(E^{c}\right)-P(F)$

(d) $P(E)-P\left(F^{c}\right)$

Show Answer

Solution:

  1. $P \frac{E^{c} \cap F^{c}}{G}=\frac{P\left(E^{c} \cap F^{c} \cap G\right)}{P(G)}$

$$ \begin{aligned} & =\frac{P(G)-P(E \cap G)-P(G \cap F)}{P(G)} \\ & =\frac{P(G)[1-P(E)-P(F)]}{P(G)} \quad[\because P(G) \neq 0] \\ & =1-P(E)-P(F)=P\left(E^{c}\right)-P(F) \end{aligned} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक