Probability 2 Question 9

9. If $M$ and $N$ are any two events, then the probability that exactly one of them occurs is

(a) $P(M)+P(N)-2 P(M \cap N)$

(1984, 3M)

(b) $P(M)+P(N)-P(\overline{M \cup N})$

(c) $P(\bar{M})+P(\bar{N})-2 P(\bar{M} \cap \bar{N})$

(d) $P(M \cap \bar{N})-P(\bar{M} \cap N)$

Fill in the Blanks

Show Answer

Answer:

Correct Answer: 9. $(a, b, c)$

Solution:

  1. $P$ (exactly one of $M, N$ occurs)

$=P{(M \cap \bar{N}) \cup(\bar{M} \cap N)}=P(M \cap \bar{N})+P(\bar{M} \cap N)$

$=P(M)-P(M \cap N)+P(N)-P(M \cap N)$

$=P(M)+P(N)-2 P(M \cap N)$

Also, $P$ (exactly one of them occurs)

$={1-P(\bar{M} \cap \bar{N})}{1-P(\bar{M} \cup \bar{N})}$

$=P(\bar{M} \cup \bar{N})-P(\bar{M} \cap \bar{N})=P(\bar{M})+P(\bar{N})-2 P(\bar{M} \cap \bar{N})$

Hence, (a) and (c) are correct answers.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक