Probability 2 Question 16

16. The probability that, on the examination day, the student $S _1$ gets the previously allotted seat $R _1$, and

NONE of the remaining students gets the seat previously allotted to him/her is

(a) $\frac{3}{40}$

(b) $\frac{1}{8}$

(c) $\frac{7}{40}$

(d) $\frac{1}{5}$

Show Answer

Solution:

  1. Here, five students $S _1, S _2, S _3, S _4$ and $S _5$ and five seats $R _1, R _2, R _3, R _4$ and $R _5$

$\therefore$ Total number of arrangement of sitting five students is $5 !=120$

Here, $S _1$ gets previously alloted seat $R _1$

$\therefore S _2, S _3, S _4$ and $S _5$ not get previously seats.

Total number of way $S _2, S _3, S _4$ and $S _5$ not get previously seats is

$$ \begin{aligned} 4 ! 1-\frac{1}{1 !}+\frac{1}{2 !}-\frac{1}{3 !}+\frac{1}{4 !} & =241-1+\frac{1}{2}-\frac{1}{6}+\frac{1}{24} \\ & =24 \frac{12-4+1}{24}=9 \end{aligned} $$

$\therefore$ Required probability $=\frac{9}{120}=\frac{3}{40}$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक