Probability 1 Question 12

20. The probability that $x _1, x _2$ and $x _3$ are in an arithmetic progression, is

(a) $\frac{9}{105}$

(b) $\frac{10}{105}$

(c) $\frac{11}{105}$

(d) $\frac{7}{105}$

Fill in the Blanks

Show Answer

Answer:

Correct Answer: 20. (c)

Solution:

  1. Since, $x _1, x _2, x _3$ are in AP.

$\therefore \quad x _1+x _3=2 x _2$

So, $x _1+x _3$ should be even number.

Either both $x _1$ and $x _3$ are odd or both are even.

$\therefore$ Required probability $=\frac{{ }^{2} C _1 \times{ }^{4} C _1+{ }^{1} C _1 \times{ }^{3} C _1}{{ }^{3} C _1 \times{ }^{5} C _1 \times{ }^{7} C _1}$

$$ =\frac{11}{105} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक