Permutations and Combinations 4 Question 6

6. Using permutation or otherwise, prove that n2!(n!)n is an integer, where n is a positive integer.

(2004, 2M)

Show Answer

Answer:

Correct Answer: 6. (i) (52)!(13!)4 (ii) (52)!4!(13!)4 (iii) (52)!3!(17)3

Solution:

  1. Here, n2 objects are distributed in n groups, each group containing n identical objects.

Number of arrangements

=n2Cnn2nCnn22nCnn23nCnn22nCnnCn=(n2)!n!(n2n)!(n2n)!n!(n22n)!n!n!1=(n2)!(n!)n

Integer (as number of arrangements has to be integer).



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक