Permutations and Combinations 4 Question 2

2. Let S be the set of all triangles in the xy-plane, each having one vertex at the origin and the other two vertices lie on coordinate axes with integral coordinates. If each triangle in S has area 50 sq. units, then the number of elements in the set S is

(2019 Main, 9 Jan II)

Show Answer

Answer:

Correct Answer: 2. (a)

Solution:

  1. According to given information, we have the following figure.

(Note that as a and b are integers so they can be negative also). Here O(0,0),A(a,0) and B(0,b)

are the three vertices of the triangle.

Clearly, OA=|a| and OB=|b|.

Area of OAB=12|a||b|.

But area of such triangles is given as 50 sq units.

12|a||b|=50|a||b|=100=2252

Number of ways of distributing two 2’s in |a| and |b|=3

|a| |b|
0 2
1 1
2 0

3 ways

Similarly, number of ways of distributing two 5’s in |a| and |b|=3 ways.

Total number of ways of distributing 2’s and 5’s =3×3=9 ways

Note that for one value of |a|, there are 2 possible values of a and for one value of |b|, there are 2 possible values of b.

Number of such triangles possible =2×2×9=36.

So, number of elements in S is 36 .



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक