Permutations and Combinations 3 Question 11

11. Let n1<n2<n3<n4<n5 be positive integers such that n1+n2+n3+n4+n5=20. The number of such distinct arrangements (n1,n2,n3,n4,n5) is

(2014 Adv.)

Fill in the Blanks

Show Answer

Answer:

Correct Answer: 11. (7)

Solution:

  1. PLAN Reducing the equation to a newer equation, where sum of variables is less. Thus, finding the number of arrangements becomes easier.

As, n11,n22,n33,n44,n55

Let n11=x10,n22=x20,,n55=x50

New equation will be

x1+1+x2+2++x5+5=20x1+x2+x3+x4+x5=2015=5

Now,

x1x2x3x4x5
x1 x2 x3 x4 x5
0 0 0 0 5
0 0 0 1 4
0 0 0 2 3
0 0 1 1 3
0 0 1 2 2
0 1 1 1 2
1 1 1 1 1

So, 7 possible cases will be there.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक