Permutations and Combinations 3 Question 11

11. Let $n _1<n _2<n _3<n _4<n _5$ be positive integers such that $n _1+n _2+n _3+n _4+n _5=20$. The number of such distinct arrangements $\left(n _1, n _2, n _3, n _4, n _5\right)$ is

(2014 Adv.)

Fill in the Blanks

Show Answer

Answer:

Correct Answer: 11. (7)

Solution:

  1. PLAN Reducing the equation to a newer equation, where sum of variables is less. Thus, finding the number of arrangements becomes easier.

As, $\quad n _1 \geq 1, n _2 \geq 2, n _3 \geq 3, n _4 \geq 4, n _5 \geq 5$

Let $\quad n _1-1=x _1 \geq 0, n _2-2=x _2 \geq 0, \ldots, n _5-5=x _5 \geq 0$

$\Rightarrow$ New equation will be

$$ \begin{aligned} & x _1+1+x _2+2+\ldots+x _5+5=20 \\ \Rightarrow \quad & x _1+x _2+x _3+x _4+x _5=20-15=5 \end{aligned} $$

Now,

$x _1 \leq x _2 \leq x _3 \leq x _4 \leq x _5$
$x _1$ $x _2$ $x _3$ $x _4$ $x _5$
0 0 0 0 5
0 0 0 1 4
0 0 0 2 3
0 0 1 1 3
0 0 1 2 2
0 1 1 1 2
1 1 1 1 1

So, 7 possible cases will be there.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक