Permutations and Combinations 3 Question 10

10. Let $n$ be the number of ways in which 5 boys and 5 girls can stand in a queue in such a way that all the girls stand consecutively in the queue. Let $m$ be the number of ways in which 5 boys and 5 girls can stand in a queue in such a way that exactly four girls stand consecutively in the queue. Then, the value of $\frac{m}{n}$ is

(2015 Adv.)

Show Answer

Answer:

Correct Answer: 10. (5)

Solution:

  1. Here, $-B _1-B _2-B _3-B _4-B _5-$

Out of 5 girls, 4 girls are together and 1 girl is separate. Now, to select 2 positions out of 6 positions between boys $={ }^{6} C _2$

4 girls are to be selected out of $5={ }^{5} C _4$

Now, 2 groups of girls can be arranged in 2 ! ways

Also, the group of 4 girls and 5 boys is arranged in $4 ! \times 5$ ! ways .

Now, total number of ways $\quad={ }^{6} C _2 \times{ }^{5} C _4 \times 2 ! \times 4 ! \times 5$ ! [from Eqs. (i), (ii), (iii) and (iv)]

$\therefore \quad m={ }^{6} C _2 \times{ }^{5} C _4 \times 2 ! \times 4 ! \times 5 !$

and $n=5 ! \times 6$ !

$\Rightarrow \quad \frac{m}{n}=\frac{{ }^{6} C _2 \times{ }^{5} C _4 \times 2 ! \times 4 ! \times 5 !}{6 ! \times 5 !}=\frac{15 \times 5 \times 2 \times 4 !}{6 \times 5 \times 4 !}=5$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक