Permutations and Combinations 3 Question 1

1. The number of 6 digits numbers that can be formed using the digits $0,1,2,5,7$ and 9 which are divisible by 11 and no digit is repeated, is

(2019 Main, 10 April I)

Show Answer

Answer:

Correct Answer: 1. (a)

Solution:

  1. Key Idea Use divisibility test of 11 and consider different situation according to given condition.

Since, the sum of given digits

$$ 0+1+2+5+7+9=24 $$

Let the six-digit number be abcdef and to be divisible by 11 , so the difference of sum of odd placed digits and sum of even placed digits should be either 0 or a multiple of 11 means $|(a+c+e)-(b+d+f)|$ should be either 0 or $a$ multiple of 11 .

Hence, possible case is $a+c+e=12=b+d+f$ (only) Now, Case I

set ${a, c, e}={0,5,7}$ and $\operatorname{set}{b, d, f}={1,2,9}$

So, number of 6 -digits numbers $=(2 \times 2 !) \times(3 !)=24$

$[\because a$ can be selected in ways only either 5 or 7$]$.

Case II

Set ${a, c, e}={1,2,9}$ and set ${b, d, f}={0,5,7}$

So, number of 6 -digits numbers $=3 ! \times 3 !=36$

So, total number of 6 -digits numbers $=24+36=60$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक