Permutations and Combinations 2 Question 20

20. A student is allowed to select atmost $n$ books from $n$ collection of $(2 n+1)$ books. If the total number of ways in which he can select at least one books is 63 , find the value of $n$.

(1987, 3M)

Show Answer

Answer:

Correct Answer: 20. $n=3$

Solution:

  1. Since, student is allowed to select at most $n$ books out of $(2 n+1)$ books.

$\therefore \quad{ }^{2 n+1} C _1+{ }^{2 n+1} C _2+\ldots .+{ }^{2 n+1} C _n=63$

We know ${ }^{2 n+1} C _0+{ }^{2 n+1} C _1+\ldots . .+{ }^{2 n+1} C _{2 n+1}=2^{2 n+1}$

$\Rightarrow 2\left({ }^{2 n+1} C _0+{ }^{2 n+1} C _1+{ }^{2 n+1} C _2+\ldots+{ }^{2 n+1} C _n\right)=2^{2 n+1}$

$\Rightarrow \quad{ }^{2 n+1} C _1+{ }^{2 n+1} C _2+\ldots+{ }^{2 n+1} C _n=\left(2^{2 n}-1\right)$

From Eqs. (i) and (ii), we get

$$ \begin{array}{rlrl} \Rightarrow & & 2^{2 n}-1 & =63 \\ \Rightarrow & 2^{2 n} & =64 \\ \Rightarrow & 2 n & =6 \\ & n & =3 \end{array} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक