Permutations and Combinations 1 Question 2

2. How many $3 \times 3$ matrices $M$ with entries from ${0,1,2}$ are there, for which the sum of the diagonal entries of $M^{T} M$ is 5 ?

(2017 Adv.)

(a) 198

(b) 162

(c) 126

(d) 135

Show Answer

Answer:

Correct Answer: 2. (a)

Solution:

  1. Sum of diagonal entries of $M^{T} M$ is $\sum a _i^{2}$.

$$ \sum _{i=1}^{9} a _i^{2}=5 $$

Possibilities I. $2,1,0,0,0,0,0,0,0$, which gives $\frac{9 !}{7 !}$ matrices

II. $1,1,1,1,1,0,0,0$, 0 , which gives $\frac{9 !}{4 ! \times 5 !}$ matrices

Total matrices $=9 \times 8+9 \times 7 \times 2=198$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक