Parabola 3 Question 6

6. Let $L$ be a normal to the parabola $y^{2}=4 x$. If $L$ passes through the point $(9,6)$, then $L$ is given by

(2011)

(a) $y-x+3=0$

(b) $y+3 x-33=0$

(c) $y+x-15=0$

(d) $y-2 x+12=0$

Show Answer

Answer:

Correct Answer: 6. $(a, b, d)$

Solution:

  1. $m _{O P}=\frac{2 a t-0}{a t^{2}-0}=\frac{2}{t}$

$$ m _{O Q}=\frac{-2 a / t}{a / t^{2}}=-2 t $$

$\therefore \quad \tan \theta=\frac{\frac{2}{t}+2 t}{1-\frac{2}{t} \cdot 2 t}=\frac{2 t+\frac{1}{t}}{1-4}=\frac{-2 \sqrt{5}}{3}$

where $\quad t+\frac{1}{t}=\sqrt{5}$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक