Parabola 2 Question 1

1. If the line ax+y=c, touches both the curves x2+y2=1 and y2=42x, then |c| is equal to

(2019 Main, 10 April, II)

(a) 12

(b) 2

(c) 2

(d) 12

Show Answer

Answer:

Correct Answer: 1. (c)

Solution:

Key Idea Use the equation of tangent of slope ’ m ’ to the parabola y2=4ax is y=mx+am and a line ax+by+c=0 touches the circle x2+y2=r2, if |c|a2+b2=r.

Since, equation of given parabola is y2=42x and equation of tangent line is ax+y=c or y=ax+c,

then c=2m=2a[m= slope of line =a]

[ line y=mx+c touches the parabola

y2=4ax iff c=a/m ]

Then, equation of tangent line becomes

y=ax2a

Line (i) is also tangent to the circle x2+y2=1.

Radius =1=|2a|1+a21+a2=|2a|

1+a2=2a2 [squaring both sides] 

a4+a22=0(a2+2)(a21)=0

a2=1[a2>0,aR]

|c|=2|a|=2



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक