Matrices and Determinants 4 Question 27

28. Let α1,α2,β1,β2 be the roots of ax2+bx+c=0 and px2+qx+r=0, respectively. If the system of equations α1y+α2z=0 and β1y+β2z=0 has a non-trivial solution, then prove that b2q2=acpr.

(1987, 3M)

Show Answer

Answer:

Correct Answer: 28. x=45k7,y=13k97,z=k

Solution:

  1. Since, α1,α2 are the roots of ax2+bx+c=0.

α1+α2=ba and α1α2=ca

Also, β1,β2 are the roots of px2+qx+r=0.

β1+β2=qp and β1β2=rp

Given system of equations

α1y+α2z=0

and β1y+β2z=0, has non-trivial solution.

|α1α2β1β2|=0α1α2=β1β2

Applying componendo-dividendo, α1+α2α1α2=β1+β2β1β2

α1+α2β1β2=α1α2β1+β2

(α1+α2)2(β1+β2)24β2β2

=(β1+β2)2(α1+α2)24α1α2

From Eqs. (i) and (ii), we get

b2a2q2p24rp=q2p2b2a24ca

b2q2a2p24b2ra2p=b2q2a2p24q2cap2

b2ra=q2cpb2q2=acpr



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक