Matrices and Determinants 4 Question 26

27. Let λ and α be real. Find the set of all values of λ for which the system of linear equations

λx+(sinα)y+(cosα)z=0x+(cosα)y+(sinα)z=0

 and x+(sinα)y(cosα)z=0

has a non-trivial solution.

For λ=1, find all values of α.

(1993,5 M)

Show Answer

Answer:

Correct Answer: 27. θ=nπ,nπ+(1)nπ6,nZ

Solution:

  1. Given, λx+(sinα)y+(cosα)z=0

x+(cosα)y+(sinα)z=0

and x+(sinα)y(cosα)z=0 has non-trivial solution.

Δ=0|λsinαcosα1cosαsinα1sinαcosα|=0λ(cos2αsin2α)sinα(cosα+sinα)λ+sinαcosα+sinαcosαsin2α+cos2α=0λ=cos2α+sin2αa2+b2asinθ+bcosθa2+b22λ2

Again, when λ=1,cos2α+sin2α=1

12cos2α+12sin2α=12cos(2απ/4)=cosπ/42απ/4=2nπ±π/42α=2nππ/4+π/4 or 2α=2nπ+π/4+π/4α=nπ or nπ+π/4



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक