Matrices and Determinants 4 Question 23

«««< HEAD

24. Let S be the set of all column matrices b1 b2 b3 such that b1,

======= ####24. Let S be the set of all column matrices |b1b2b3| such that b1,

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed b2,b3R and the system of equations (in real variables)

|x+2y+5z=b12x4y+3z=b2x2y+2z=b3|

has at least one solution. Then, which of the following system(s) (in real variables) has (have) at least one solution for each |b1b2b3|S

(a) x+2y+3z=b1,4y+5z=b2 and x+2y+6z=b3

(b) x+y+3z=b1,5x+2y+6z=b2 and 2xy3z=b3

(c) x+2y5z=b1,2x4y+10z=b2 and x2y+5z=b3

(d) x+2y+5z=b1,2x+3z=b2 and x+4y5z=b3

Show Answer

Answer:

Correct Answer: 24. (a,d)

Solution:

  1. We have,

|x+2y+5z=b12x4y+3z=b2x2y+2z=b3|

has at least one solution.

D=|125243122| and D1=D2=D3=0D1=|b125b243b322| =2b114b2+26b3=0b1+7b2=13b3 (a) D=|123045126|=1(2410)+1(1012)=142=120

Here, D0 unique solution for any b1,b2,b3.

(b) D=|113526213|

=1(6+6)1(15+12)+3(5+4)=0

For atleast one solution

D1=D2=D3=0 Now, D1=|b113b226b313|=b1(6+6)b2(3+3)+b3(66)=0D2=|1b135b262b33|=b1(15+12)+b2(3+6)b3(615)=3b1+3b2+9b3=0b1+b2+3b3=0

not satisfies the Eq. (i)

It has no solution.

(c) D=|1252410125|

=1(20+20)2(1010)5(4+4)

=0

Here, b2=2b1 and b3=b1 satisfies the Eq. (i) Planes are parallel.

(d) D=|125203145|=1(012)2(103)+5(80)=54

D0

It has unique solution for any b1,b2,b3.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक