Matrices and Determinants 4 Question 21

22. If the system of equations $x-k y-z=0, k x-y-z=0$, $x+y-z=0$ has a non-zero solution, then possible values of $k$ are

$(2000,2 M)$

(a) $-1,2$

(b) 1,2

(c) 0,1

(d) $-1,1$

Show Answer

Answer:

Correct Answer: 22. (d)

Solution:

  1. Since, the given system has non-zero solution.

$ \therefore \quad \begin{vmatrix} & 1 & -k & -1 \\ & k & -1 & -1 \\ & 1 & 1 & -1 \end{vmatrix}=0 $

Applying $C _1 \rightarrow C _1-C _2, C _2 \rightarrow C _2+C _3$

$ \begin{vmatrix} & 1+k & -k-1 & -1 \\ & 1+k & -2 & -1 & =0 \\ & 0 & 0 & -1 \end{vmatrix} $

$ \Rightarrow 2(k+1)-(k+1)^2=0$

$ \Rightarrow (k+1)(2-k-1)=0$

$ \Rightarrow k\pm 1$

NOTE" There is a golden rule in determinant that $n$ one’s $\Rightarrow$ $(n-1)$ zero’s or $n$ (constant) $\Rightarrow(n-1)$ zero’s for all constant should be in a single row or a single column.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक