Matrices and Determinants 4 Question 13

14. If the system of linear equations

$ \begin{aligned} x+k y+3 z & =0,3 x+k y-2 z=0 \\ 2 x+4 y-3 z & =0 \end{aligned} $

has a non-zero solution $(x, y, z)$, then $\frac{x z}{y^{2}}$ is equal to

(a) -10

(b) 10

(c) -30

(d) 30

(2018 Main)

Show Answer

Answer:

Correct Answer: 14. (b)

Solution:

  1. We have,

$x+k y+3 z=0 ; 3 x+k y-2 z=0 ; 2 x+4 y-3 z=0$

System of equation has non-zero solution, if

$ \begin{vmatrix} 1 & k & 3\\ 3 & k & -2 \\ 2 & 4 & -3 \end{vmatrix} $ =0

$ \begin{aligned} & \Rightarrow(-3 k+8)-k(-9+4)+3(12-2 k)=0 \\ & \Rightarrow \quad-3 k+8+9 k-4 k+36-6 k=0 \\ & \Rightarrow \quad-4 k+44=0 \Rightarrow k=11 \\ & \text { Let } \quad z=\lambda \text {, then we get } \\ & x+11 y+3 \lambda=0 \\ & 3 x+11 y-2 \lambda=0 \\ & \text { and } \quad 2 x+4 y-3 \lambda=0 \end{aligned} $

Solving Eqs. (i) and (ii), we get

$ x=\frac{5 \lambda}{2}, y=\frac{-\lambda}{2}, z=\lambda \Rightarrow \frac{x z}{y^{2}}=\frac{5 \lambda^{2}}{2 \times-\frac{\lambda}{2}}=10 $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक