Matrices and Determinants 4 Question 10

10. The number of values of θ(0,π) for which the system of linear equations

x+3y+7z=0,x+4y+7z=0,(sin3θ)x+(cos2θ)y+2z=0

has a non-trivial solution, is

(2019 Main, 10 Jan II)

(a) two

(b) three

(c) four

(d) one

Show Answer

Answer:

Correct Answer: 10. (a)

Solution:

  1. We know that,

the system of linear equations

a1x+b1y+c1z=0a2x+b2y+c2z=0a3x+b3y+c3z=0

has a non-trivial solution, if

|a1b1c1a2b2c2a3b3c3|=0

Now, if the given system of linear equations

x+3y+7z=0x+4y+7z=0

and (sin3θ)x+(cos2θ)y+2z=0

has non-trivial solution, then

|137147sin3θcos2θ2|=0

1(87cos2θ)3(27sin3θ) +7(cos2θ4sin3θ)=0

87cos2θ+6+21sin3θ 7cos2θ28sin3θ=0

7sin3θ14cos2θ+14=0

7(3sinθ4sin3θ)14(12sin2θ)+14=0

[sin3A=3sinA4sin3A and 

cos2A=12sin2A]

28sin3θ+28sin2θ21sinθ14+14=0

7sinθ[4sin2θ+4sinθ3]=0

sinθ[4sin2θ+6sinθ2sinθ3]=0

sinθ[2sinθ(2sinθ+3)1(2sinθ+3)]=0

(sinθ)(2sinθ1)(2sinθ+3)=0

Now, either sinθ=0 or 12

sinθ32 as 1sinθ1

In given interval (0,π),

sinθ=12θ=π6,5π6[sinθ0,θ(0,π)]

Hence, 2 solutions in (0,π)



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक