Matrices and Determinants 3 Question 8

«««< HEAD

10. Let $\omega \neq 1$ be a cube root of unity and $S$ be the set of all $\begin{array}{lll}1 & a & b \ \omega & 1 & c, \text { where } \ \omega^{2} & \omega & 1\end{array}$ non-singular matrices of the form $\omega 1 c$, where each of $a, b$ and $c$ is either $\omega$ or $\omega^{2}$. Then, the number of distinct matrices in the set $S$ is

======= ####10. Let $\omega \neq 1$ be a cube root of unity and $S$ be the set of all, where non-singular matrices of the form $\begin{bmatrix}1 & a & b \\ \omega & 1 & c, \\ \omega^{2} & \omega & 1\end{bmatrix}$ , where each of $a, b$ and $c$ is either $\omega$ or $\omega^{2}$. Then, the number of distinct matrices in the set $S$ is

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed

(2011)

(a) 2

(b) 6

(c) 4

(d) 8

Show Answer

Answer:

Correct Answer: 10. $(a)$

Solution:

  1. $|A| \neq 0$, as non-singular $\begin{bmatrix}1 & a & b \\ \omega & 1 & c \\ \omega^{2} & \omega & 1\end{bmatrix} \neq 0$

$\Rightarrow \quad 1(1-c \omega)-a\left(\omega-c \omega^{2}\right)+b\left(\omega^{2}-\omega^{2}\right) \neq 0$

$\Rightarrow \quad 1-c \omega-a \omega+a c \omega^{2} \neq 0$

$\Rightarrow \quad(1-c \omega)(1-a \omega) \neq 0 \Rightarrow a \neq \frac{1}{\omega}, c \neq \frac{1}{\omega}$

$\Rightarrow \quad a=\omega, c=\omega$ and $b \in(\omega, \omega^{2}) \quad \Rightarrow \quad 2$ solutions



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक