Matrices and Determinants 3 Question 13
«««< HEAD
15. If the adjoint of a $3 \times 3$ matrix $P$ is $2 \quad 1 \quad 7$, then the $\begin{array}{lll}1 & 1 & 3\end{array}$ possible value(s) of the determinant of $P$ is/are
======= ####15. If the adjoint of a $3 \times 3$ matrix $P$ is $2 \quad 1 \quad 7$, then the $\begin{bmatrix} 1 & 4 & 4 \\ 2 & 1 & 7 \\ 1 & 1 & 3 \end{bmatrix}$ possible value(s) of the determinant of $P$ is/are
3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed
(a) -2
(b) -1
(c) 1
(d) 2
Show Answer
Answer:
Correct Answer: 15. (a,d)
Solution:
- PLAN: If $\left|A _{n \times n}\right|=\Delta$, then $|\operatorname{adj} A|=\Delta^{A-1}$
Here, adj $P _{3 \times 3}=$ $ \begin{bmatrix} 1 & 4 & 4\\ 2 & 1 & 7\\ 1 & 1 & 3 \end{bmatrix} $
$\Rightarrow \quad|\operatorname{adj} P|=|P|^{2}$
$ \begin{aligned} \therefore \quad|\operatorname{adj} P| & =\begin{bmatrix} 1 & 4 & 4 \\ 2 & 1 & 7 \\ 1 & 1 & 3 \end{bmatrix}=1(3-7)-4(6-7)+4(2-1) \\ & =-4+4+4=4 \Rightarrow|P|= \pm 2 \end{aligned} $