Matrices and Determinants 3 Question 11

«««< HEAD

13. Let P=312 20α 350, where αR. Suppose Q=[qij] is a matrix such that PQ=kI, where kR,k0 and I is the identity matrix of order 3 . If q23=k8 and det(Q)=k22, then

======= ####13. Let P=[31220α350], where αR. Suppose Q=[qij] is a matrix such that PQ=kI, where kR,k0 and I is the identity matrix of order 3 . If q23=k8 and det(Q)=k22, then

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed

(2016 Adv.)

(a) α=0,k=8

(b) 4αk+8=0

(c) det(Padj(Q))=29

(d) det(Qadj(P))=213

Show Answer

Answer:

Correct Answer: 13. (b,c)

Solution:

  1. Here, P=[31220α350]

Now, |P|=3(5α)+1(3α)2(10)

=12α+20

adj(P) =[5α2α1010612α(3α+4)2]

=[5α10α2α6(3α+4)10122]

 As, PQ=kI|P||Q|=|kI||P||Q|=k3|P|k22=k3 given, |Q|=k22

|P|=2kPQ=kIQ=kp1I=kadjP|P|=k(adjP)2k [from Eq. (iii)] =adjP2=12[5α10α2α63α410122]q23=3α42 given, q23=k8(3α+4)2=k8(3α+4)×4=k12α+16=k From Eq. (iii), |P|=2k12α+20=2k

On solving Eqs. (iv) and (v), we get

α=1 and k=4

4αk+8=44+8=0

Option (b) is correct.

Now, |Padj(Q)|=|P||adjQ|

=2kk2222=k52=2102=29

Option (c) is correct.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक