Matrices and Determinants 3 Question 11

«««< HEAD

13. Let $P=\begin{array}{cccc}3 & -1 & -2 \ 2 & 0 & \alpha \ 3 & -5 & 0\end{array}$, where $\alpha \in R$. Suppose $Q=\left[q _{i j}\right]$ is a matrix such that $P Q=k I$, where $k \in R, k \neq 0$ and $I$ is the identity matrix of order 3 . If $q _{23}=-\frac{k}{8}$ and $\operatorname{det}(Q)=\frac{k^{2}}{2}$, then

======= ####13. Let $P=\begin{bmatrix}3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0\end{bmatrix}$, where $\alpha \in R$. Suppose $Q=\left[q _{i j}\right]$ is a matrix such that $P Q=k I$, where $k \in R, k \neq 0$ and $I$ is the identity matrix of order 3 . If $q _{23}=-\frac{k}{8}$ and $\operatorname{det}(Q)=\frac{k^{2}}{2}$, then

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed

(2016 Adv.)

(a) $\alpha=0, k=8$

(b) $4 \alpha-k+8=0$

(c) $\operatorname{det}(P \operatorname{adj}(Q))=2^{9}$

(d) $\operatorname{det}(Q \operatorname{adj}(P))=2^{13}$

Show Answer

Answer:

Correct Answer: 13. (b,c)

Solution:

  1. Here, $ P=\begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0 \end{bmatrix} $

Now, $\quad|P|=3(5 \alpha)+1(-3 \alpha)-2(-10)$

$ =12 \alpha+20 $

$\therefore \quad \operatorname{adj}(P)$ =$ \begin{bmatrix} 5 \alpha & 2 \alpha & -10\\ -10 & 6 & 12 \\ -\alpha & -(3 \alpha+4) & 2 \end{bmatrix}$

=$ \begin{bmatrix} 5 \alpha & -10 & -\alpha \\ 2 \alpha & 6 & -(3 \alpha+4)\\ -10 & 12 & 2 \end{bmatrix}$

$ \begin{aligned} & \text { As, } \quad P Q=k I \\ & \Rightarrow \quad|P||Q|=|k I| \\ & \Rightarrow \quad|P||Q|=k^{3} \\ & \Rightarrow \quad|P| \frac{k^{2}}{2}=k^{3} \quad \text { given, }|Q|=\frac{k^{2}}{2} \end{aligned} $

$ \begin{aligned} & \Rightarrow \quad|P|=2 k \\ & \because \quad P Q=k I \\ & \therefore \quad Q=k p^{-1} I \\ & =k \cdot \frac{\operatorname{adj} P}{|P|}=\frac{k(\operatorname{adj} P)}{2 k} \quad \text { [from Eq. (iii)] } \\ & =\frac{\operatorname{adj} P}{2}=\frac{1}{2} \begin{bmatrix} 5 \alpha & -10 & -\alpha \\ 2 \alpha & 6 & -3 \alpha-4 \\ -10 & 12 & 2 \end{bmatrix} \\ & \therefore \quad q _{23}=\frac{-3 \alpha-4}{2} \quad \text { given, } q _{23}=-\frac{k}{8} \\ & \Rightarrow \quad-\frac{(3 \alpha+4)}{2}=-\frac{k}{8} \\ & \Rightarrow \quad(3 \alpha+4) \times 4=k \\ & \Rightarrow \quad 12 \alpha+16=k \\ & \text { From Eq. (iii), } \quad|P|=2 k \\ & \Rightarrow \quad 12 \alpha+20=2 k \end{aligned} $

On solving Eqs. (iv) and (v), we get

$ \alpha=-1 \text { and } k=4 $

$\therefore \quad 4 \alpha-k+8=-4-4+8=0$

$\therefore$ Option (b) is correct.

Now, $\quad|P \operatorname{adj}(Q)|=|P||\operatorname{adj} Q|$

$ =2 k{\frac{k^{2}}{2}} _2^{2}=\frac{k^{5}}{2}=\frac{2^{10}}{2}=2^{9} $

$\therefore$ Option (c) is correct.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक