Matrices and Determinants 2 Question 44

«««< HEAD

48. The total number of distincts xR for which |xx21+x3 2x4x21+8x3 3x9x21+27x3|=10 is

======= ####48. The total number of distincts xR for which |xx21+x32x4x21+8x33x9x21+27x3|=10 is

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed

(2016 Adv.)

Show Answer

Answer:

Correct Answer: 48. (2)

Solution:

  1. Given, |xx21+x32x4x21+8x33x9x21+27x3|=10

xx2|111+x3241+8x3391+27x3|=10

Apply R2R22R1 and R3R33R1, we get

x3|111+x3021+6x3062+24x3|=10x3|26x31624x32|=10

x3(48x3436x3+6)=1012x6+2x3=106x6+x35=0x3=56,1x=(56)1/3,1

Hence, the number of real solutions is 2 .



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक