Matrices and Determinants 2 Question 44

«««< HEAD

48. The total number of distincts $x \in R$ for which $\left|\begin{array}{ccc}x & x^{2} & 1+x^{3} \ 2 x & 4 x^{2} & 1+8 x^{3} \ 3 x & 9 x^{2} & 1+27 x^{3}\end{array}\right|=10$ is

======= ####48. The total number of distincts $x \in R$ for which $\left|\begin{array}{ccc}x & x^{2} & 1+x^{3} \\ 2 x & 4 x^{2} & 1+8 x^{3} \\ 3 x & 9 x^{2} & 1+27 x^{3}\end{array}\right|=10$ is

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed

(2016 Adv.)

Show Answer

Answer:

Correct Answer: 48. (2)

Solution:

  1. Given, $\left|\begin{array}{ccc}x & x^{2} & 1+x^{3} \\ 2 x & 4 x^{2} & 1+8 x^{3} \\ 3 x & 9 x^{2} & 1+27 x^{3}\end{array}\right|=10$

$ \Rightarrow \quad x \cdot x^{2}\left|\begin{array}{ccc} 1 & 1 & 1+x^{3} \\ 2 & 4 & 1+8 x^{3} \\ 3 & 9 & 1+27 x^{3} \end{array}\right|=10 $

Apply $R _2 \rightarrow R _2-2 R _1$ and $R _3 \rightarrow R _3-3 R _1$, we get

$ \begin{aligned} & x^{3}\left|\begin{array}{ccc} 1 & 1 & 1+x^{3} \\ 0 & 2 & -1+6 x^{3} \\ 0 & 6 & -2+24 x^{3} \end{array}\right|=10 \\ & \Rightarrow \quad x^{3} \cdot\left|\begin{array}{cc} 2 & 6 x^{3}-1 \\ 6 & 24 x^{3}-2 \end{array}\right|=10 \end{aligned} $

$ \begin{array}{rlrl} \Rightarrow & x^{3}\left(48 x^{3}-4-36 x^{3}+6\right) =10 \\ \Rightarrow & 12 x^{6}+2 x^{3} =10 \\ \Rightarrow & 6 x^{6}+x^{3}-5 =0 \\ \Rightarrow & x^{3} =\frac{5}{6},-1 \\ & x =(\frac{5}{6}){ }^{1 / 3},-1 \end{array} $

Hence, the number of real solutions is 2 .



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक