Matrices and Determinants 2 Question 42
46. Without expanding a determinant at any stage, show that
$ \left|\begin{array}{ccc} x^{2}+x & x+1 & x-2 \\ 2 x^{2}+3 x-1 & 3 x & 3 x-3=x A+B \\ x^{2}+2 x+3 & 2 x-1 & 2 x-1 \end{array}\right| $ $= xA+B$
where $A$ and $B$ are determinants of order 3 not involving $x$.
$(1982,5 M)$
Show Answer
Solution:
- Let $\Delta=\left|\begin{array}{ccr}x^{2}+x & x+1 & x-2 \\ 2 x^{2}+3 x-1 & 3 x & 3 x-3 \\ x^{2}+2 x+3 & 2 x-1 & 2 x-1\end{array}\right|$
Applying $R _2 \rightarrow R _2-\left(R _1+R _3\right)$, we get
$ \Delta=\left|\begin{array}{ccc} x^{2}+x & x+1 & x-2 \\ -4 & 0 & 0 \\ x^{2}+2 x+3 & 2 x-1 & 2 x-1 \end{array}\right| $
Applying $R _1 \rightarrow R _1+\frac{x^{2}}{4} R _2$
and $R _3 \rightarrow R _3+\frac{x^{2}}{4} R _2$, we get
$ \Delta=\left|\begin{array}{ccc} x & x+1 & x-2 \\ -4 & 0 & 0 \\ 2 x+3 & 2 x-1 & 2 x-1 \end{array}\right| $
Applying $R _3 \rightarrow R _3-2 R _1=\left|\begin{array}{ccc}x+0 & x+1 & x-2 \\ -4 & 0 & 0 \\ 3 & -3 & 3\end{array}\right|$
$ \left|\begin{array}{rrr} x & x & x \\ -4 & 0 & 0 \\ 3 & -3 & 3 \end{array} \right| $ + $ \left|\begin{array}{rrr} 0 & 1 & -2 \\ -4 & 0 & 0 \\ 3 & -3 & 3 \end{array} \right| $
= $x$ $ \left|\begin{array}{rrr} 1 & 1 & 1 \\ -4 & 0 & 0 \\ 3 & -3 & 3 \end{array} \right| $ + $ \left|\begin{array}{rrr} 0 & 1 & -2 \\ -4 & 0 & 0 \\ 3 & -3 & 3 \end{array} \right| $
$\Rightarrow \quad \Delta=A x+B$
where, $A=\left|\begin{array}{rrr}1 & 1 & 1 \\ -4 & 0 & 0 \\ 3 & -3 & 3\end{array}\right|$
and $B=\left|\begin{array}{rrr}0 & 1 & -2 \\ -4 & 0 & 0 \\ 3 & -3 & 3\end{array}\right|$